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Abstract. In the present work we demonstrate the use of a parcellation
free connectivity model based on Poisson point processes. This model
produces for each subject a continuous bivariate intensity function that
represents for every possible pair of points the relative rate at which we
observe tracts terminating at those points. We fit this model to explore
degree sequence equivalents for spatial continuum graphs, and to inves-
tigate the local differences between estimated intensity functions for two
different tractography methods. This is a companion paper to [11], where
the model was originally defined.
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1 Introduction

In the past decade, graph theoretic analyses have rapidly propagated through
neuroimaging literature. Following advances in diffusion and functional MRI,
the rise of connectomics has popularized the use of network representations of
brain architecture and activity. Such analyses usually equate physical regions
of the cortical surface with nodes in a graph, and use structural or function
measurements as proxies for edge weights.

Increased use of the network representation of brain connectivity has been
accompanied by the use of network statistics in disease-oriented neuroscience;
nodal measures such as modularity, centrality, and degree sequences are all com-
mon descriptors for connectomes [2], and the effect of various diseases on these
descriptors has been the focus of recent study [4]. The popularity of these mea-
sures stems in part from their theoretical underpinnings. In particular, the distri-
bution of nodal degrees has deep implications for the organization and topology
of a random network.

For brain networks the choice of a particular delineation of physical regions
(parcellation) and thus the choice of nodes is non-trivial. Multiple studies have
shown that the choice of parcellation influences the summary measures including
nodal degree for both structural and functional networks [13,17,18]. It remains
unclear which of the many parcellations is optimal, or whether or not a single
overall “best” parcellation exists [12], assuming a criterion for quality can be



agreed upon. Furthermore, the study of local or multi-scale grained phenomena
often require specific resolutions and thus specific parcellations. This presents a
dilemma to the community: do we choose the best parcellation for their specific
study, or do we choose a parcellation that generalizes well to other literature?

It is therefore valuable to explore alternative representations that avoid these
issues. In particular, it is useful to construct representations of cortical connec-
tivity that are independent of the choice of parcellation, yet still theoretically
and computationally tractable both for estimation as well as statistical analy-
sis, as well as retaining the ability to construct parcellation based connectivity.
Furthermore, the exploration of continuous equivalents to currently popular net-
work statistics and their similarities and/or deviations from current empirical
observations is of interest.

In the current work we explore the empirical properties of such a model,
described in a companion paper [11]. We explore a continuous representation
of cortical connectivity that describes the observation of white matter tract1

endpoints using a random process defined on the gray matter/white matter
interface (the inner cortical surface). This form of connectivity generalizes tra-
ditional connectomes to a parcellation-independent representation from which,
given any particular parcellation, the discrete connectome may be recovered.
We reproduce degree distribution results similar to those described by discrete
representation analyses using our continuous model, and note the instances of
discrepancy between the two. We further investigate differences between two
tractography methods in the degree distribution (marginal intensity function).

2 Continuous Connectivity Model

In order to ensure that the reader may understand the results in Section 3,
we first review the theory and motivation behind this particular continuous
connectivity model; more details can be found in [11]. In particular we introduce
the framework itself and its general terminology, focusing on the key piece of
our model, the Poisson point process and its intensity function. We then define
the analogous statistic to degree for the continuous framework, which will serve
as the empirical focus of the next section.

2.1 Model Description and Theoretical Discussion

A point process is a random process in which collections of discrete points are
generated randomly on a measurable space. The Poisson process is the most
basic of these, assuming that these points are generated independently (i.e. the
appearance of one point does not affect the probability of observing another) and
with some relative rate proportional to an intensity function λ : Domain→ R+.
For any subset of the domain the distribution of the number of points in that

1 It is important to distinguish between white matter fibers (fascicles) and observed
“tracts.” Here, “tracts” denotes the 3d-curves recovered from Diffusion Weighted
Imaging via tractography algorithms.



subset is Poisson with parameter equal to λ integrated over the subset. This
means the expected number of points is exactly that integral. We use this process
to model tract endpoint locations on the cortical surface. Our domain is the
connectivity space of the cortex (the product of the gray/white matter interface
with itself) which is the set of all pairs of possible endpoints, and each point in
this space corresponds with a pair of tract endpoints.

In our context of connectomics, this framework produces two different struc-
tures that are both analogous to connectivity. The first is the usual region-to-
region connectivity, which is produced by measuring the expected tract count on
a subset of the domain which is itself composed of all pairs of points in two sub-
sets of the cortex. These cortical subsets are not necessarily disjoint. The second
representation of connectivity is the intensity function λ. While the first is an
aggregation of the second, it is important to separate them. The intensity func-
tion has pointwise intensities which are not comparable with the second. The
second representation generalizes the first over the choice of regions. Varying
segmentation choices for the first representation can be compared in the context
of the second.

A more formal definition of the framework is as follows: Let Ω be union
of two disjoint subspaces each diffeomorphic to the 2-sphere representing the
cortical surface for a particular hemisphere, and assume that tracts randomly
and independently intersect with this surface at exactly two points. Further
consider the space Ω × Ω, which is the space of pairs of points on the cortical
surface, in our case the space of all possible pairs of endpoints of tracts. We
model connectivity as a function λ : Ω × Ω → R+ such that for any regions
E1, E2 ⊂ Ω the number of observed tracts having one end point in E1 and the
other in E2 is Poisson distributed with parameter

C(E1, E2) =

∫∫
E1,E2

λ(x, y)dxdy. (1)

This is exactly a Poisson point process of tract endpoints over Ω×Ω with λ
is its intensity function. Note that for E1, E2 with non-trivial intersections this
double counts the number of actual tracts observed in that intersection. If a tract
has endpoint (x, y) ∈ E1 ∩E2, then clearly there exists a tract (y, x) ∈ E1 ∩E2.

We define λ(x, y) for any particular (x, y) as the pointwise connectivity be-
tween x and y. Though it is not technically required, we assume this pro-
cess (characterized by λ) to be smooth everywhere and symmetric (λ(x, y) =
λ(y, x)).. We further assume tracts are generated independently; more complex
point process models relax this assumption, and a more general form of this
model could be considered, in which λ is vector valued, and the Poisson dis-
tribution may be substituted for any distribution parameterizable by integral
terms. These models are unfortunately computationally intractable with current
estimation methods, but are relevant to the proceeding discussion.

We define a regional connectivity as the expected number of tracts between
any two regions. In the Poisson case this is exactly C(E1, E2). For any parti-
tion (parcellation) P =

⋃
iEi = Ω, this forms a connectivity matrix similar to



the traditional connectomes (which provide connectivity for the P × P discrete
space). From empirical data, a valid estimator is simply counting the number of
tracts present between each pair of regions, as current methods dictate. Thus,
continuous connectivity models of the form proposed here generalizes graphs
generated by finite partitions of Ω (including overlapping paritions) for certain
classes of edge weight distributions.

An important summary statistic of traditional graphs is the degree sequence,
defined as the collection of sums of each edge for each node (this counts each
edge weight exactly twice, though for different terms in the sequence). A sim-
ilar construct exists for the continuous connectome which we call the marginal
connectivity, given by

M(x) =

∫
Ω

λ(x, y)dy.

M(x) itself is defined over Ω. Using the assumption that λ is continuous, it
can be shown fairly easily that M(x) is also continuous. Though not explored in
this paper, another natural extension are marginal connectivities from a particu-
lar region. Choosing any region E, we can define them as ME(x) =

∫
E
λ(x, y)dy,

which is the total connectivity from point x to the region E.

2.2 Estimation and Asymptotic Estimator Distribution

A sufficient statistic for Poisson process models is the intensity function λ(x, y).
Estimation of the function is non-trivial, and has been the subject of much
study in the spatial statistics community [5]. We choose to use a non-parametric
Kernel Density Estimation (KDE) approach due to an efficient closed (truncated
harmonic) form for estimation. We first inflate each surface to a sphere and
register them using a spherical registration (See section 3.1), assuming each
hemisphere is disjoint with the other. Our domain is then Ω×Ω the product of
spheres (S1 ∪ S2)× (S1 ∪ S2).

The unit normalized spherical heat kernel is a natural choice of kernel for S2.
We use its truncated spherical harmonic representation [3], defined as follows for
any two unit vectors p and q on the 2-sphere:

Kσ(p, q) =

H∑
h

2h+ 1

4π
exp{−h(h+ 1)σ}P 0

h (p · q)

Here, P 0
h is the hth degree associated Legendre polynomial of order 0. Note that

the non-zero order polynomials have coefficient zero due to the radial symmetry
of the spherical heat kernel [3]. However, since we are estimating a function on
Ω × Ω, we use the product of two heat kernels as our KDE kernel κ. For any
two points p and q, the kernel value associated to a end point pair (x, y) is
κ((p, q)|(x, y)) = Kσ(x, p)Kσ(y, q).

We then apply this kernel to our data in order to recover the intensity func-
tion. This is exactly λ̂(p, q) = κ((p, q)|D) =

∑
(xi,yi)∈DKσ(xi, p)Kσ(yi, q) where



λ̂ denotes our estimation of λ, the true intensity. Since storing the exact func-
tional form is expensive, in practice we evaluate this at each vertex of the cortical
surface triangulated mesh.

It should be noted that while the end result of this process is an array of
values corresponding to a triangulated mesh of the cortical surface (which can
be inflated into a sphere), this is not equivalent to a high resolution discrete con-
nectome except in the roughest terms. Each point here represents a pointwise
evaluation of the density function, and the difference between adjacent mesh
vertices is bounded (since the domain is compact, we can show that the true
intensity function must be absolutely continuous if it is continuous at all). The
discrete connectome, no matter how small the region, represents an areal con-
nectivity value, and in most cases caries no geometric information, much less a
smoothness condition.

The product kernel complicates the asymptotic analysis of this estimator.
Unfortunately there is no true closed form for the heat kernel on the sphere [10],
and approximations include terms that are not consistent with traditional kernel
bandwidth analysis (which usually is univariate, and unbounded). On the other
hand, it can be shown that the heat kernel using these approximate forms will
be consistent with extant first and second moments [8].

3 Empirical Results

3.1 Pre-processing

Our data are comprised of 731 subjects from the Human Connectome Project
S900 release [16]. We used the minimally preprocessed T1-weighted (T1w) and
diffusion weighted (DWI) images rigidly aligned to MNI 152 space. Briefly, the
preprocessing of these images included gradient nonlinearity correction (T1w,
DWI), motion correction (DWI), eddy current correction (DWI), and linear
alignment (T1w, DWI). We used the HCP Pipeline (version 3.13.1) FreeSurfer
protocol to run an optimized version of the recon-all pipeline that computes
surface meshes in a higher resolution (0.7mm isotropic) space.

Tractography was conducted using the DWI in 1.25mm isotropic MNI 152
space. Probabilistic streamline tractography was performed using Dipy’s Local-
Tracking module [7]. To model the fiber distribution at each voxel, Dipy’s im-
plementation of constrained spherical deconvolution (CSD) [15] was used with a
spherical harmonics order of 8. Tractography streamlines were seeded at 2 ran-
dom locations in each voxel labeled as likely white matter via the segmentation
maps generated by FSL’s FAST. Streamline tracking followed directions ran-
domly in proportion to the orientation function at each sample point at 0.5mm
steps, starting bidirectionaly from each seed point. Streamlines were only re-
tained if longer than 5mm and both ends terminated in voxels likely correspond-
ing to grey matter according to Dipy’s implementation of ACT[14]. An additional
tractography was computed in the same manner, but replacing the CSD fit for
a diffusion tensor (DTI) fit.



Fig. 1. Here we see the estimated density of sampled marginal connectivity functions.
The top figure is the direct plot, and the bottom figure is the log-log plot of the same.

We then fit 5 separate scales of continuous connectivity models, varying σ
as to capture differing scales of spatial patterns. We use each σ = {0.01,0.005,
0.001, 0.0005, 0.0001}, for both DTI and CSD . We then integrate numerically
each resulting intensity function for each subject, forming two marginal connec-
tivity functions for each subject. A paired t-test was then performed at each of
the 20484 vertex across subjects (the surface is subsampled for intensity function
computation). Multiple comparison correction was applied before inference us-
ing the Bonferroni correction for 20484 hypotheses. The continuous assumption
makes this correction overly conservative; the test points are no longer inde-



Fig. 2. In this plot we see p-values for the CSD-DTI test. Blue denotes CSD > DTI
by as significant margin, while Red denotes DTI > CSD by a significant margin. Gray
areas denote regions that were unable to reject the null hypothesis of “no difference”.
From top to bottom we have σ = {0.01,0.005, 0.001, 0.0005, 0.0001}, and from left
to right we have the left hemisphere and right hemisphere.

pendent due to the smoothness of the signal. Test statistics were evaluated at
α = 0.05. We also estimate continuous one dimensional densities for samples
from the average marginal connectivity function’s distribution of values.

3.2 Degree Sequences

Much sensation in the past 20 years has focused on complex networks and the
distribution of their degree sequences [1]. We here display estimates for a similar
measure for sampled marginal connectivity functions. Multiple studies have pro-
vided evidence of small-worldness or scale-free properties in connectomes, both
functional and structural [6,2], sometimes making conflicting claims. While we
here make no rigorous claim about the fit of one model or another, we do note
the dissimilarity to strictly power law distributions, and their similarity to ge-
ometrically constrained communication networks, particularly ad hoc computer
networks [9]. (This is qualitative comparison only, and not backed by quanti-
tative observation of ad hoc networks). The plots in Fig 1 show clear second
modes, and their log plots are slightly non-linear.



3.3 DTI-CSD Difference

As shown in Figure 2, there are clear differences recovered by the continuous
connectivity model between the CSD and DTI tractography algorithms. This not
only illustrates use of a continuous model, but is important for understanding the
different trade offs between tractography algorithms. In general DTI is much less
flexible than probabilistic CSD, but also fit orders of magnitude faster. Since each
connectome is normalized, significant areas are proportionally more explored by
a particular algorithm. The authors would also like to reiterate the value and
importance of multiple test correction in large hypothesis set situations such as
this, due to the large number of sample points tested.

DTI appears to concentrate on motor and somatosensory cortices and their
corresponding tracts, while the CSD model appears to find more tracts in the
temporal lobe. This is not to say that CSD is missing the motor tracts or that
DTI does not have any temporal lobe tracts, but that the relative concentrations
are shifted. It is also interesting to note that several small regions break this
trend, particularly for DTI concentrations in the inferior temporal and temporal-
frotal regions for σ ≤ 0.001. While this work is preliminary, this demonstrates
some of the advantages of continuous connectivity models; while region specific
models may not be able to resolve such small differences, particularly those
surrounded by significant regions of the other density, the continuum model
allows very local differences to be detected, as well as large, non-convex regions
(such as those in the parietal/frontal regions for DTI, with σ = 0.01).

This also illustrates one unfortunate issue with the continuum model: Visual-
ization of the full connectivity is difficult (a four dimensional continuum usually
embedded in six dimensions and that is not a 4-sphere). In future work we plan
on addressing this issue and developing methods to visualize portions at a time.
However, we also believe this speaks to the possible issues when visualizing the
discrete networks.

4 Conclusion

In the present work we have described a parcellation free connectivity model.
We further used this model to explore degree sequence equivalents for spatial
continuum graphs, and to investigate pointwise differences in these functions for
two different tractography methods. We believe that parcellation based networks
are critical to the exploration of the cortical landscape, but that the development
of more general methods such as the one presented here is also vital to expanding
the set of testable questions in neuroscience, and improving the answers provided
by neuroimaging.
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